Skip to main content \(\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 25.10 Resistors in Circuits: Series and Parallel
When there is more than one resistor in a circuit, you can find the equivalent resistance using the rules of series and parallel resistors.
Principle 25.10.1 . Combining Resistors in Series.
If \(N\) resistors are in series, the equivalent resistance is:
\begin{equation*}
R_{\mathrm{eq}} = \sum_{i = 1}^{N} R_i = R_1 + R_2 + R_3 + \dots
\end{equation*}
Principle 25.10.2 . Combining Resistors in Parallel.
If \(N\) resistors are in parallel, the equivalent resistance is:
\begin{equation*}
\frac{1}{R_{\mathrm{eq}}} = \sum_{i = 1}^{N} \frac{1}{R_i} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots
\end{equation*}
Exercises Activities
1.
Suppose you have a box of identical resistors, each rated for 6
\(\Omega\text{.}\) Describe an arrangement of these resistors that has an equivalent total resistance of 4
\(\Omega\text{.}\)