Skip to main content Contents
Prev Up Next \(\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 11.8 Ampere’s Law
Definition 11.8.1 . Ampere’s Law.
Ampere’s Law relates the net magnetic field around a closed curve to the current passing through the region bounded by the curve:
\begin{equation*}
\bigcirc \!\!\!\!\!\!\!\!\int_S \vec{B}\cdot d\vec{s} = \mu_o I_{enclosed}
\end{equation*}
Exercises Activities
1.
Shown below are three different cases, each with two identical current-carrying wires and a circular Amperian loop. In which case is the net magnetic field around the loop the largest?
Figure 11.8.2. Three cases are shown depicting an Amperian loop (dashed line) and different wires.