Skip to main content Contents
Prev Up Next \(\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 4.16 The Impulse-Momentum Theorem
Definition 4.16.1 . Impulse.
An external force \(\vec{F}\) acting on a system from \(t_i\) to \(t_f\) will deliver an impulse to the system of:
\begin{equation*}
\vec{J} = \int_{t_i}^{t_f} \vec{F}dt
\end{equation*}
Principle 4.16.2 . The Impulse-Momentum Theorem.
The net impulse delivered to a system is equal to the change in momentum for that system:
\begin{equation*}
\vec{J}_{net} = \Delta \vec{p}
\end{equation*}
Exercises Activities
1.
When would it be appropriate to say that the momentum of a system is conserved? Give an example of a context where you think the momentum of a system is conserved. Give a different example of a context where you think the momentum of a system is not conserved. Do you think your answers depend on what systems you choose?